
Building a Relocatable Python
Marc Paterno

Revision 1

Contents

1 Introduction 1
2 How to repeat the problem 2
3 Building a fully relocatable Python 2
4 Conclusions 4
5 Recommendations 4

1 Introduction

The SSI group distributes most of the software we produce using “relocatable UPS”.
UPS provides a facility to allow run-time selection between multiple versions of installed
“packages”, and to prevent the setup of mutually-inconsistent packages. In addition,
“relocatable UPS” provides the ability for users with no elevated system privileges to install
pre-built binary packages, and simplifies the management of multiple installed packages.
Python is one of the many packages delivered through UPS.

The “traditional” UPS manner or building Python (the Python interpreter and its Standard
Library) results in a package that is not fully relocatable. While many features of the
distributed package work correctly, the user often will experience problems in using
distutils1, the Python Standard Library component that provides a build system for
Python extension modules.

The problem is that distutils has compiled-in (or, as it turns out, code-generated-at-build-
time) absolute paths, resulting in the inability for setup.py scripts for third-party code
(e.g. numpy) to find necessary Python libraries.

In this note I describe what needed to be done to fix this problem, so that out-of-the-box
builds of third-party code would work. An important goal of this effort was to retain the
UPS philosophy of delivering already-built software, rather than software that needs to
be built on each platform. This was important for Python since we distribute a pre-built
Root package which depends upon a specific Python distribution. If we were unable to
deliver a pre-built Python distribution, we would not have an easy and safe means of
delivering a Root binary installation package that would depend on a specific Python
build.

1distutils is described at http://docs.python.org/2/library/distutils.html.

1

mailto:paterno@fnal.gov
http://docs.python.org/2/library/distutils.html

2 Relocatable Python (Rev. 1)

Terminology

Module: A Python module is a body of code which may define classes, functions, and
constants, and which is loaded using an import statement. Modules may be “pure”
(written in Python) or “impure” (written in a compiled language, e.g. C).

2 How to repeat the problem

To demonstrate the failure of the traditional UPS build of Python, one can follow these
steps:

1. Build a Python “source” distribution using the python-ssi-build scripts.
2. Build a Python binary distribution, from the generated “source” distribution. This

may be done on the same machine that was used for the creation of the “source”
distribution tarball.

3. Install the binary distribution kit on a different machine (not on the machine on
which the binary distribution kit was built).

4. Use the installed Python to build an impure extension module. This will fail due to
an inability to find libpython2.7.so, because the link-line flags used by distutils
reflect the location at which Python was built, rather than where is was installed.

Figure 1 shows the C-language source code for a very simple impure module. This module,
named helloworld, contains a single function, called hello; the implementation is
found in the file hi.c.2 The instructions used to build this module are shown in figure 2.
These instructions make use of distutils.

To build the extension module, move to a directory containing the two files hi.c and
setup.py, and run:

> python setup .py ins ta l l −−user

This is intended to build the Python module helloworld, and install it in a user-specific
“site-packages” directory. The module would then be available through use of the Python
import statement. However, with an imperfectly-relocatable Python build, the linking of
the helloworld module will fail. This is the problem for which this document describes
the solution.

3 Building a fully relocatable Python

The key observation in the failure is that distutils makes use of a (pure) Python module
sysconfigdata, which in turn makes use of a (pure) Python module sysconfigdata. This
can be found in during the build of Python at, e.g., /v2_7_5a/Linux64bit+2.6-2.12/
src/Python-2.7.5/build/lib.linux-x86_64-2.7/_sysconfigdata.py (for a build

2I have chosen this seemingly odd selection of names to make it clear which name is used for which
purpose in creating the module. More common naming practice would be for the module, the single
function, and the C source code filename to all be the same.

Relocatable Python (Rev. 1) 3

1 #include "Python.h"

3 static PyObject* helloworld(PyObject* self) {
4 return Py_BuildValue("s", "Hello, Python extensions!!");
5 }

7 static char hw_docs[] = "helloworld(): put docs here\n";

9 static PyMethodDef helloworld_funcs[] = {
10 {"helloworld", (PyCFunction)helloworld, METH_NOARGS, hw_docs},
11 {NULL}
12 };

14 void inithelloworld(void) {
15 Py_InitModule3("helloworld", helloworld_funcs, "Example!");
16 }

Figure 1: The C source code for a simple impure Python module, file hi.c.

1 from distutils.core import setup, Extension
2 setup(name=’helloworld’, version=’1.0’, \
3 ext_modules=[Extension(’helloworld’, [’hi.c’])])

Figure 2: Build instructions for the helloworld module, file setup.py.

of Python v2.7.5a, on a 64-bit SLF6 machine; on other machines, the location will vary).
The source text for this module is written as part of the build of Python. It is the result of
parsing several other files (Makefiles and configuration files).

This module contains a single definition, for a variable named build_time_vars. This
variable is assigned a value that is a Python dict, with about 500 entries. The keys are
all strings, as are the values. Many of the values denote paths on the system on which
Python was built.

The central feature of the fix involves modifying the build to patch this file immediately
after its generation. The patch rewrites the file so that importing the module sets several
local variables to values determined by the values of several environment variables at
the time of the import, and to replace the use of hard-coded paths by these variables. A
truncated version of the code is shown in figure 3.

The general pattern of the solution is:

1. Insert code to capture the necessary environment variable values at import time.
2. Replace portions of hard-coded paths with these captured values.

The specific environment variables that had to be used are:

• PYTHON_ROOT, which points to the “root” of the Python installation; this is the
directory under which are found the bin and lib directories containing the installed

4 Relocatable Python (Rev. 1)

Python product. For example, the Python interpreter is found at ${PYTHON_ROOT}/
bin/python.

• PYTHON_DIR, which points to the base of the UPS installation of Python for the
particular release; it is the directory under which the UPS flavor/qualifier directories
appear, and under which the product’s ups directory would be found. For example,
${PYTHON_DIR}/ups/python.table is the location for the table file for that version
of Python.

• SQLITE_DIR points to the base of the UPS installation for SQLite, similar to the
meaning of PYTHON_DIR. SQLITE_DIR is needed so that we make sure the Python
Standard Library sqlite3 module is built with the same SQLite version as is the
other software we develop.

1 from os import environ as env
2 this_python_root=env[‘‘PYTHON_ROOT’’]
3 this_python_dir=env[‘‘PYTHON_DIR’’]
4 this_sqlite_dir=env[‘‘SQLITE_DIR’’]
5 build_time_vars = {’AC_APPLE_UNIVERSAL_BUILD’: 0,
6 ...
7 ’BINDIR’: this_python_root+’/bin’,
8 ...

Figure 3: A portion of the patched _sysconfigdata.py, showing the introduction of the
import-time evaluation of the environment variables.

4 Conclusions

With the modifications described above, there are no features of Python known to fail. I
have tested both building of impure modules and use of the Python debugger.

5 Recommendations

The Python Standard Library includes many modules that require underlying C libraries.
We have already had to modify the Python build to use an SQLite installation of our
choosing, rather than one it would find by its own mechanisms. If we begin to distribute
our own version of other underlying modules, the patches for the _sysconfigdata
module would need to be modified to add support for those libraries.

	1 Introduction
	2 How to repeat the problem
	3 Building a fully relocatable Python
	4 Conclusions
	5 Recommendations

